
Monitoring Software Development

through Dynamic Variables

t

N87- 24901

ABSTRACT

This paper describes research conducted by the Software

Engineering Laboratory (SEL) on the use of dynamic variables as a

tool to monitor software development. The intent of the project

is to identify project independent measures which may be used in

a management tool for monitoring software development. This

study examines several FORTRAN projects with similar profiles.

The staff was experienced in developing these types of projects.

The projects developed serve similar functions. Because these

projects are similar we believe some underlying relationships

exist that are invariant between the projects. These relation-

ships, once well defined, may be used to compare the development

of different projects to determine whether they are evolving the

same way previous projects in this environment evolved.

Authors:

Carl W. Doerflinger

University of Maryland

Dept. of Computer Science

College Park, MD 20742
(301) 454-4251

Victor R. Basili

University of Maryland

Dept. of Computer Science

College Park, MD 20742

(301) 454-2002

KEYWORDS

management tool, metric, measurement, predictive model

t

;_ECEDING PAGE 8L_NK NOT i_L_D

4-45

• __LTF.IW_ONALLI _I.ANg

Monitoring Software Development

through Dynamic Variables

by

Carl W. Doerflinger

and

Victor R. Basili

I. Overview

The Software Engineering Laboratory (SEL) is a Joint effort

between the National Aeronautics and Space Administration (NASA),

the Computer Sciences Corporation (CSC), and the University of

Maryland established to study the software development process.

To this end, data has been collected for the last six years. The

data was from attitude determination and control software

developed by CSC, in FORTRAN, for NASA. Additional information

on the SEL, the data collection effort, and some of the studies

that have been made may be found in papers from the Software

Engineering Laboratory Series published by the SEL [Card82],

[Church82], [SEL82].

The interest in the software development process is

motivated by a desire to predict costs and quality of projects

being planned and developed. For several years, studies have

examined the relationships between variables such as effort,

size, lines of code, and documentation [Walston77], [Basili81].

These studies, for the most part, used data collected at the end

of past projects to predict the behavior of similar projects in

the future, in 1981 the SEL concluded that many of these factors

4-46

!

!

i

i

!

i

!

!

i

I
I
I

!
I
I
I
!
i
I

were too dependent on the environment to be useful for the models

that had been developed [Bailey81]. Any model which attempts to

trace these relationships should therefore be calibrated to the

environment being examined. The meta-model proposed by the SEL

is designed for such flexibility [Bailey81].

Another way to isolate out the environment dependent factors

is by comparing two internal factors of a project, thus ignoring

all outside influences. One approach that is used to monitor

software development examines the time gap between the initial

report of software problems and the complete resolution of the

problem [Manley82]. Comparing two*variables is useful because it

also accentuates problem areas as they develop, providing rela-

tive information rather than absolute information. Relative

information is useful to the project manager because it accentu-

ates trends as the project develops. If project environments are

similar, then similar values should be expected. Because the

project environments in the SEL are similar, it was felt that

this approach could be further extended to provide managers with

information about how a set of variables over the course of a

project differed from the same set of variables on other projects

(baselines). The managers could be alerted to potential problems

and use Other variable data and project knowledge to determine

whether the project was in trouble.

This methodology is flexible enough to respond to changing

needs. Every time a project is completed the measures collected

during its development may be added in to calculate a new

4-47

baseline. In this way, the baselines may adapt to any changes in

the environment, as they occur.

Baselines might also be developed to reflect different

attributes. For instance, several projects which had good pro-

ductivity might be grouped to form a productivity baseline. Once

baselines are established, projects in progress may be compared

against them. All measures falling outside the predetermined

tolerance range are interpreted by the manager.

I__I. Methodology

The implementation of this methodology is dependent on two

factors. The first factor is the availability of measures that

are project independent and can also be collected throughout a

project's development. Variables like programmer hours and

number of computer runs are project dependent. By comparing

these variables against each other a set of relative measures may

be generated which is project independent. For instance, the

number of software changes may vary from project to project. The

project dependent features shared by each variable will cancel

out when the ratio of software changes per computer run is taken.

The resulting relative measure is project independent.

The second factor is the need for fixed time intervals com-

mon to all projects. To normalize for time, project milestones

were used. The time into a project might be twenty percent into

coding instead of ten weeks into the project, for instance.

4-48

!

!

a

i
11
!
II

II
II
i
II
It
I
i
l
g

D

ii

When computing the baselines one other factor was con-

sidered. At any given interval during development a variable may

measure either the total number of events that have occurred from

the beginning of development (cumulative) or the number of of

events that have occurred since the last measured interval

(discrete). Since these approaches may convey different informa-

tion it was felt that they both should be used.

For simplicity, the baseline for each relative measure was

defined as the average and standard deviation computed for the

measure at predetermined intervals. A project's progress may now

be charted by the software manager. At each interval in a pro-

Jects development the relative measures are compared with their

respective

are flagged.

manager to

measure may indicate a project is developing exceptionally

or it may indicate a problem has been encountered.

baseline. Any measures outside a standard deviation

These measures are then interpreted by the project

determine how the project is progressing. A flagged

well

The interpretation of a set of flagged measures is a three

step process. First, the manager must determine the possible

interpretations for each flagged relative measure using lists of

possible interpretations developed and verified based on past

projects.

Second, the union of the lists of possible interpretations

of each flagged measure must be taken. The list formed by this

union contains all the possible interpretations ordered using the

4-49

number of times each interpretation is repeated in the different

lists. The larger the number of overlaps a possible interpreta-

tion has, the greater the probability it is the correct interpre-

tation.

Third, the manager must analyze the combined list and deter-

mine if a problem exists. Interpretations with an equal number

of overlaps all have an equal probability of being the correct

interpretation. If none of the possible interpretations for a

given relative measure overlap then the relative measure should

be considered separately.

When analyzing the interpretations, three pieces of informa-

tion must be considered; the measurements, the point in develop-

ment, and the managers knowledge of the project. A relative

measure may indicate different things depending on the stage of

development. For instance, a large amount of computer time per

computer run early in the project may indicate not enough unit

testing is being done. Personal knowledge may also give valuable

insight.

A fundamental assumption for using this methodology is that

similar type projects evolve similarly. If a different type of

project was compared to this database, the manager would have to

decide whether the baselines were applicable. Depending on the

type of differences, the established baselines may or may not be

of any value.

4-50

I

!

i

I
I
I
I
I
i

i

I
I
I
I
I
!
I
I

1
i
I

i
I
I

I

I
I

I

1
I

I

I

I

I
I

-11

EXAMPLE I:

Forty percent into coding a software manager finds that the

lines of source code per software change is higher than normal.

A list previously developed is examined to determine what the

relative measure might indicate. The possible interpretations

for a large number of lines of source code per software change

might be:

- good code

- easily developed code

- influx of transported code

- near build or milestone date

- computer problems

- poor testing approach

If this were the only flagged measure the manager would then

investigate each of the possibilities. If the value for the

measure is close to the norm less concern is needed than if the

value is further away.

If in addition to lines of source code per software change

the number of computer runs per software change was higher than

normal, the manager would also examine this measure. The possi-

ble interpretations for a large number of computer runs per

software change might be:

- good code

- lots of testing

- change backlog

- poor testing approach

The union of the possible interpretations of these two measures

indicates that the strongest possible interpretations are I) good

code and 2) a poor testing approach. The number of possibilities

to investigate is smaller because these are the only measures

4-51

which overlap. The manager must now examine the testing plan and

decide whether either of these interpretations reflect what is

actually occurring in the project. If these two possible

interpretations do not reflect what is happening on the project,

the manager would then examine the other interpretations.

III. Baseline Development
1

To develop a baseline one must first have variables whose

measurements were taken weekly for several projects. Five vari-

ables in the SEL database were used. The lines of source code,

number of software changes, and number of computer runs were col-

lected on the growth history form. The amount of computer time

and programmer hours were collected on the resource summary form.

Measurement of these variables started near the beginning of cod-

ing. In this study, nine separate projects were examined whose

development was documented, with sufficient data, in the SEL

database. The projects ranged

source code with an average of 75K.

the requirements or design phases.

in size from 51-112K lines of

No examination was done for

Once the variables were chosen the average and standard

deviation was computed for each baseline. Some baselines suf-

fered from limited data points during the beginning of the coding

phase. A couple of the projects, in which problems were known to

have existed, were flagged as soon as data on these projects

appeared, but this was fifty percent of the way into coding. It

is not known how much earlier they would have appeared, if data

4-52

,3
o

t
0

o_
U

•.4 -_

Sample Baseline .

"o_.

•.0,.

.o

oO

°o

•\

.i

• .°°°°'°°; /

:

i.

-"'-_...

(I 0 a) .0 _"

= 6 o 6 6..e q.4

_q>-

._.o_

4-53

existed at the early intervals.

IV. Interpretation of Relative Measures

Once a set of baselines are established new projects may be

compared to them and potential problems flagged. To interpret

these flagged relative measures a list should be developed with

each measures possible interpretations. Each list must consider

the possible interpretations of the relative measure when it is

either above normal or below normal. What each component vari-

able actually measures should also be considered when the dif-

ferent lists are developed.

A list was developed with possible interpretations for each

relative measure being examined in the context of the SEL

environment. In another environment the interpretation of these

measures might be different. These lists are subdivided into two

categories; above and below normal. The above normal category

contains possible interpretations for the relative measure when

it is outside one standard deviation from the average in the

positive direction. The below normal category refers to

interpretations when the measure is outside one standard devia-

tion from the mean in the negative direction.

One of the reasons this methodology works is because of the

implicit interdependencies between different relative measures.

To show these interdependencies more explicitly a cross reference

chart has also been provided for each interpretation to indicate

4-54

I
i

I

I
II
I

I
II

I

l
I
I

i
II
II

I

II
I
II

o o II

00,0

• q _ g
"_ 0 0 k
0 L,.O 0
U o _ _

g

o

0

0

_ e

L _

a,
B
0

B

'0

o
Q,
ill

n
II C
L 0

)'1 '_I 0 f,, t
"dN_O 00

_ g O _Op.4 OP*_ U

_ I .,,4 0

k 0 0 II _ L"L

0"i 0 O II

•-4 I l I I I

_l IN
0 r..

0

0
o e

r. e el

•0 0 o I ck

0"40 • r-
_ _0

_ _ "4 0

_4 | I l I I
aS

0

aP 0

o 0
• _r.lU

0 0 Q II

aS

r., El ,= _,, o _1 r,.,, 0 _ 0
_l 0 0 0 _ 00 _, O _,

II

I I I ! I I I I !

_ ¢'d _I _.-r i..I ,.0 L,.. _0 0-_

,..4

4-55

0

o
&,

0

o

L

31

0

--i

0
f_

0

g

Q.

0

.J

...'_
o o I
c:_ r.

2J_

¢.

o IiI _

o

o

ootl

,_°

s.

o

e_
f_
Q

_t _-

_r

I

0

OU iI
Q iI _ e-

_lI 0 f,- 0
¢_ I-4

_-i I ! I l

0

0
o •

o

_ I _- •

o 0
.o e-

0

o o

Q

G c: gas

_-i s I I I I l

.GI 0

o

o ,n

o

c. o n

,2=°X_._o
0-40 _ I

,_ I I I I I

0 I

m_m

o o I
G ,.-¢ _

Q

f.

m > m

Z., n 0

0 ,,I C

C

g

g _
0 0

B
L

B

L _
g

_L
8
0

,.1

o..-_
o o I
e- ,.., L

o

_ :--
o n o_

o o t-

k

o

o

o
i-

• ,,.4

= [
o _.

o

...4

U
I
t_

0

_ 2

0
,o o

¢o

*Q

o rrlm t_i

.u

4,_ [" G

e- ,,_ 00
0 S. 4..

O

I I I ,-4 I I

O m

i
! ¢h
¢

I

! .

e

o _1

_m

"cl,_
o
o m

G
• _ o
O.U

o_
8

"_ o

0 I

i o

4-56

I
0

o,

O

k.

I
I

L
b0
O
S*

E'--

I
0

G
m

o
_7

oO i
e, ,.., L
e e 0
e_ .o e*

e.

o

a_

e_

c

¢&

o o m

I I o
[...o e*

4.,

t,._ o

o

g

G_

o •

o

_,,-¢ •

,._':oo

• 0 t,. L

> !
0 e_

,g

,2

¢ •

0 o.lo
_ L

O 0

l I I

0 B

W •
G

o

° :

- _

0 _ t_ O

• _ I I I I

8

.¢.

o
_0s..

0

_ .,,4 0

o°_: o

o E!

@ o

I

I

I

I

I
I

l

I
I

I
I
I

i
I

I

I

I
I
I

l

I
l

I
I

I
I
I
I

l
I
i

l
I

I

I

I
I
I

II
II
f.
(I0
0
L.
D.

e_
G

_J

l

.iJ

o

L
g

8
0
r_

a_

0 0 li

o o

g

t_

w > 8

U L_ o
C Q I _

L

4..
@

&, O
e -.4

_ o
_ L

L,, ,_

g

O0 il

• e 0

Q

o_
L

¢..Q O

¢
O

O

N

.,.)
m

!! ,..* o

II 0 .._
¢_ real
_O ...* il
o
_- O0

G ¢,s,
• ,4 Im

O .u _ ["

04,D g •

0 0 ill
0 O_,G

,., .'? ? ?
> B
0
n o
,i ¢:

Q

11

o

0 c:

: J

O o

,..4 I ! I ! I
•I. _II
0 li

/ --T

II _.D

m 0

[.. i_ o

0
k. :1_ 0 ,11

O O.,-IJ_ _ O

@ _I
> a
o [..
J_ o

Q

o
G
0

e_

:gt
• ..4 t I I

O B

4-57

ORIG!h'AL r_,_ ,._,

OF POOR QUAJ.JTY

other relative measures that can have the same interpretation. A

number in the cross reference section indicates the list number

of a relative measure that can have the same interpretation. The

position of the list number in the 4-quadrant cross reference

section indicates whether both interpretations are found with

above normal values, both with below normal values, or one with

above and the other with below normal values.

With these lists a set of flagged relative measures may be

evaluated. When a relative measure is flagged, its associated

list is examined for possible interpretations. Overlaps of this

list with the lists of other flagged relative measures form the

new list of what these relative measures together might indicate.

The more overlaps a particular interpretation has, the greater

the.chance it is the correct interpretation. Interpretations

with the same number of overlaps must be considered equally. The

more relative measures flagged the more serious the problem may

be. It is up to the manager to determine whether the deviation

is good or bad.

2- Monitorin_ a Software Project's Development

Once the baselines have been developed and the lists of pos-

sible interpretations have been put together a software manager

may monitor the actual development of a project. Example I

demonstrated how a single interval may be interpreted. The fol-

lowing discussion will trace the development of an actual pro-

Ject. During the actual use of this methodology, influence would

4-58

!

!
l

l

!
!
!
l
I

I
I
I

I
I

I

I
I
I

I

t
I
i
1
i

I
I

I

i
I
I

I
I

I

I

I

be exerted to correct problems as soon as they are identified.

With this study, we must be content to study a projects evolu-

tion, without hindrance, and see at what points problems could of

been detected.

Project twenty m was chosen for this examination because data

existed throughout the projects development. In most respects

project twenty was an average project. The project did have a

lower than normal productivity rate. The lower rate may be par-

tial!y explained by the fact the management was less experienced

when compared to other projects. The project also suffered from

some delayed staffing. Changes in staffing will be noted when

the different time intervals are discussed.

The tables on the following page show which

ures were

lines for

represent

measure was from the baseline. The baseline for each

measure was calculated using all nine projects.

relative meas-

flagged when project twenty was compared to the base-

each stage of development. The numerical values

how many standard deviations each flagged relative

relative

Start of Coding:

At the start of coding only one relative measure is flagged.

The smaller than normal number of software changes per line of

source code using the discrete approach reflects work done during

• The numbering convention used is an extension

first used by Bailey and Basili [Bailey81].

of the one

4-59

I

o

II

o

e

0 II
N

,° 0

0

0
_..

a. m

a
q;
fa

0

m

0

a_

0

f.. 0.
f. _I 0
0 a.1 0

0 0 >_

0 a;

aJ

...-0 0 "0
c:O 0

@ 0
"0

0

_ 0"0
•._ _ 0
¢; 0

0 0 "0
_" 0

_ "0
3 (_ 0
_" 0

a_

0
0

O
O
f.,

O O

_-, O

@ 0

•,-t O I1
,.-_ L @

_] O .,4

.;= O _

L, I_ a)

b0 _ e,-

;- = 0

_ u'J _n

@ •
I ,'-'
I
I

I
@
I
I

I
I
÷
I

I
I
I
÷

I
I
r
I

I
I
I
I

I
I
I
I
+
i

i
I
!

I
I

I.
!

I

I
i
i

I
I

e-

L

5
0

B
B

:
0
f..

Q.

-

@

I
I
!

• ÷

,- I
I
I

• ÷
,- I

I

I

I
!
I
4,

I
I
I

÷ •

I
I
I ¢_I
÷ •
I ,-

I
I
I ,-

I ,-

I
I
I
@
I
!

I

!
|

÷

I
I
I
I
4,

I
I
I

I
÷
I
I

I
I
@.
I

I
I
I
@

I
I
I
I
.@

I
I
I
I
@

I
I
I
I
4,

I

I
I
I
.@
!
I

I
|

I

!
I

12
0

ID
I1

0

tl I.
f.. III
O ,.)
C fl

O
f., t_

t.,
a.;

rJ _-

O a,_
I..,_ _J

f,. > cO

"O "o

C c

D
O

O e_
t o

.O

O "_
C

"o
0

a.;

B

_o

O

f..

4;
O
f.,

O O

t., O

•,-0 rJ O O _
,.._ L. _1 rJ 4)

f., _ O O ,.-_

[.. _ ,,.4 ,.4 a._

,. :.;= .;= O
Q.L, O O O

I

0 ÷ • •

0 I ¢_I "

I

I
I

I
I

4) I
"0 @

O
I
I
I

"0 @

I
I

0 I _ "-

0 1
I

I "--
¢I I

I
I _

0 I _ ""
0 1

I
I

0 !
0 1

I

0

S

0 _I
t.. 0

• .I_ 4, ÷

¢_I I I I
I I I
I I I

0 1 I I
• • @ .I, ÷

¢_ ¢'_I I l I

I I I
I I I
I I I
@ ÷ 4.

I I I
I I I
I I I

_ _ I I ¢_I I
• • @ @ • .l-

I I I
I ; I

I I I
.@ 4, 4,
I I I
I I ' I
I I I
! ! !
4"' ÷ @

I I I
I I I
I ! I

"" _ I I I
• 4- 4. .I-

I I I
I I I
I I I

• .@ 4.. "I,'

'-- I I I
I I I
I I I

_ ¢%t I _1 I I
• • 4" • @ a.

I I I
I I I

÷ @ _I-

•- I I I
I I I
I _ I _ I

4-60

I

I

I

i

I

I

I

i

I

i

I

I

I

I

I

I

I

I

|

I
I
I
I
i
I
I
I
I
I
I
i
I
I
I
I

the design phase. The lists designed in the previous section

were directed towards code production and testing and do not

apply to this time interval when using the discrete approach.

This measure may indicate good specifications or lots of PDL

being generated. The manager might want to examine this measure

later if it constantly repeated. Since it is the only measure

flagged at this time it will be ignored.

20% Coding:

The flagged relative measures found using the discrete

approach at this point represent the work done from the start of

coding until twenty percent of the way through coding. The list

of possible interpretations for the flagged relative measures,

generated from the lists made previously for the individual rela-

tire measure, would look like:

overlaps interpretation

3
3
2

2

2
1

1

bad specifications

code removed

low productivity

high complexity

error prone code

lots of testing

good testing

changes hard to isolate

changes hard to make

unit testing being done

easy errors being found

The strongest interpretations are bad specifications and code

being removed. If the actual history is examined one finds that

during this period there were a lot of specifications being

changed. This resulted in code which was to be modified being

4-61

I

discarded and new code being written. During the early period

lots of PDL was being produced but very little new executable

code. The list of possible interpretations does show that low

productivity is also a strong possibility.

40% Coding:

The flagged relative measures which appear using the cumula-

tive approach, from this time period on, are stronger indicators

than the ones used in the first couple of intervals because the

average is computed using more data points. The use of the

discrete approach for the interval of twenty to forty percent is

still dependent on three data points. The list of possible

interpretations for this time period is:

overlaps interpretation

I low productivity

I high complexity

I error prone code

I bad specifications

1 code being removed

changes hard to isolate

changes hard to make

lots of testing

unit testing being done

good testing

easy errors

The number of possibilities is larger with this set of possible

interpretations. Five interpretations are slightly stronger than

the others. During the actual development, the first release of

the project was made. The amount of code actually written was

also lower than normal during this period. The use of the

discrete approach gives a stronger feeling that code is not being

4-62

!

m

I
I

II
II
I

I
I

I

I
i

I

i
II

I
i
II

l

I

I

I

I

i

i

I

!
I

I
I

i

i

I
i
I

I

written. Transported code tends to be installed in large

which can be isolated using the discrete approach.

blocks

50$ Coding:

The relative measures flagged during this period are the

same as the ones flagged at the twenty percent coding interval.

The deviation from the norm for this interval is larger. The

larger deviation may indicate a more serious problem. The prob-

lem may of been Just as serious earlier but without the extra

data points, that are now available, it could not be determined.

The possible interpretations may be taken from the list developed

earlier. Bad specifications and code removal were not factors

during this period. The next three highest priority interpreta-

tions were; high complexity, error prone code, and low produc-

tivity. In addition to this the manager should be concerned with

the continued appearance of the relative measure, programmer

hours per computer run, as seen using the cumulative approach.

This may indicate a lot of testing going on. This in conjunction

with error prone code as a possible interpretation may indicate

trouble. During actual development this period was spent

developing code for the second release. The project manager felt

that code was still not being developed quickly enough during

this period.

60% Coding:

4-63

!

Only one relative measure is shown at this interval. The

number of programmer hours per computer run using the cumulative

approach is lower than normal for the third consecutive time.

This should concern the manager because when examining the list

for this measure one finds:

error prone code

lots of testing

easy errors being fixed

Since the occurrence of this measure is persistent it may indi-

cate that the problem was corrected but not enough effort was

expended to completely compensate for the past problems. It

might also indicate the problem still exists. During the actual

project it was found that while a lot of code was written, it had

not been throughly tested. Release two was made during this

period which could explain a heavy test load. Two additional

staff members were added to the project during this phase to aid

in coding and testing.

80% Coding:

The eighty percent coding interval does not show any meas-

ures outside the normal bounds. The addition of two staff

members during the sixty percent coding phase, as well as the

addition of a senior staff member during this phase, appears to

have adjusted the project back along the lines of normal develop-

ment. To fully compensate for the earlier problems one might

expect some of the measures to swing in the other direction away

4-64

I

It
I

I

I
I
I

I
I

II
I

I

I
li

II

II
I
II

II

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

l

from the average. The fact this over correction did not occur

might explain the problems encountered in the next section.

Start of System and Integration Testing:

The flagged relative measures at this time period

the build up of effort for the third and final release.

of possible interpretations for the collective set of

measures looks like:

overlaps interpretation

3
3
3
2

2

2

I

I

I

I

high complexity

bad specifications

code being removed

error prone code

low productivity

lots of testing

changes hard to isolate

unit testing being done

good code

poor testing

changes hard to make

good testing

compute bound algorithms

being run

easy errors being fixed

Since the code did have a past history of poor testing an

ally large build up of testing should be expected.

interpretations that apply most to this situation are

testing and error prone code.

reflect

The list

flagged

unusu-

The two

lots of

50% System and Integration Testing:

Only one relative measure is flagged at this interval. This

measure was flagged using the cumulative approach. An examina-

tion of the measure at the previous interval shows a very high

4-65

I

value. A slow drop off from this high measure is to be expected

when using the cumulative approach. An examination of possible

interpretations that would apply for this period of development

include:

high complexity

lots of testing

unit testing being done

testing code being removed

A lot of testing is certainly indicated by past history.

Start Acceptance Testing:

The relative measures flagged at this interval reflects the

build up in testing before the start of acceptance testing. The

list of possible interpretations looks like:

overlaps interpretation

bad specifications

code being removed

high complexity

low productivity

error prone code

lots of testing

changes hard to isolate

changes hard to make

unit testing being done

good testing

Since little code was being developed during the testing period,

a large amount of testing with errors being found is the most

reasonable interpretation of these flagged measures. The early

history of poor testing may be seen here with errors being

uncovered late.

4-66

I
I

I
I
l
I

I
I
I

I
I

I

I
I

I
I

I
I

I

I

l

I

I

I

I

l

I

I

I

I

i

I

!

I

I

I

I

End Acceptance Testing:

The two flagged relative measures at the end of acceptance

testing reflect the clean up effort being made on the code. An

average amount of computer time and an average number of computer

runs indicates that the acceptance testing is going well. The

project was behind schedule due to the eariier problems encoun-

tered. Clean up was done during the acceptance testing phase in

an attempt to get the project out the door as soon as possible.

As seen in this example, the problems that

projects development

the relative measures.

monitor projects.

occur during a

are reflected in the values calculated for

The methodology preposed can be used to

The number of possible interpretations

increases with each new flagged relative measure. The ordering

of the measures by the number of overlaps provides an easy method

of sorting the possible interpretations by priority. Another

method of sorting the possible interpretations could include a

factor that considers both the number of overlaps and the proba-

bility of a given interpretation being the cause at a given

interval. The weighting of interpretations for a given interval

could be calculated using the pattern of occurrence of the dif-

ferent interpretations which have appeared during the same inter-

val in past projects.

V I. An Alternate A_roach

4-67

Flagged relative measures might also be interpreted using a

decision support system. The data for the various relative meas-

ures would be stored in a knowledge base along with a set of pro-

duction rules. To evaluate a project the values for each rela-

rive measure would be entered into

base would compare the relative

baselines, determine which relative

the system. The knowledge

measures to their respective

measures were outside the

norm, and interpret these relative measures using the production

rules. A list of possible interpretations ordered by probability

would be generated as a result.

The difference between a decision support system and the

approach presented in this paper is the method of interpreting

the flagged relative measures. Each production rule in the deci-

sion supportsystem is the logical disjunction of several flagged

measures which yields a given interpretation. Each production

rule is assigned a confidence rating which is then used to rate

the possible interpretations. The lists for the relative meas-

ures provided earlier in the paper may be easily converted to

production rules using the cross reference section. To develop

the production rules for an interpretation one must generate the

various combinations of relative measures which might reasonably

imply the interpretation. Some relative measures may not imply a

particular interpretation unless they are found in conjunction

with another relative measure. Once the production rules are

known and a knowledge base constructed a decision support system

may be built. For an example of a domain independent decision

4-68

I
I

I
I

I
I

I
I
I
I

l

i

l
I

I
I

i
I

support system see Reggia and Perricone [Reggia82].

VII. Summary

The methodology presented in this paper showed that invari-

ant relationships exist for similar projects. New projects may

be compared to the baselines of these invariant relationships to

determine when projects are getting off track.

The ability of the manager to interpret the measures that

fall outside the norm is dependent on the amount of information

the underlying variables convey. The manager must decide what

attributes are to be measured (e.g. productivity) and pick vari-

ables that are closely related to them and are also measurable

throughout the project. As an example, a variable like lines of

code may be too general when measuring productivity. Measuring

the newly developed code, either source code or executable code,

would be more informative since these variables are more directly

related to effort. How applicable an interpretation is for the

period currently being examined should also be considered when

ordering the list. The variables the manager finally decides on

are then combined to form relative measures.

One method of interpreting a relative measure is by associ-

ating lists of possible interpretations with it. When a relative

measure appears outside the norm, the list of possible interpre-

tations is considered. If more than one relative measure is out-

side the norm the lists are combined. The more times a possible

4-69

I

interpretation is repeated in the lists, the greater the proba-

bility it is the cause. How applicable an interpretation is for

the period being examined should also be considered when ordering

the list. The manager must investigate the suggested causes to

determine the real one.

VIII. Conclusion

The ability to monitor a projects development and detect

problems as they develop may be feasible. The methodology pro-

posed showed favorable results when examining a past case.

The use of baselines and lists of interpretations for com-

paring projects provides an easy method for monitoring software

development. Both the baselines and the lists of interpretations

may be updated as new projects are developed. As more knowledge

is gleaned the accuracy of this system should improve and provide

a valuable tool for the manager.

4-70

l

I

I
I

l
I
I

I
I

l
I

I
I

I

I
I

I
I

I

!

I

I

I

I

i

I

I

I

I

I

i

!

I

I

I

I

I

Bibliography

[Bailey81]

Bailey, John W. and victor R. Basili, A Meta-Model for

Software Development Resource Expenditures, Proceedings,

Fift______hInternational Conference on Software Engineering, Sep-
tember 1981.

[Basili81]

Basili, Victor R. and Karl Freburger, Programming Measure-

ment and Estimation in the Software Engineering Laboratory,

Journal of Systems and Software, 1981.

[Card82]

Card, David, Frank McGarry, Jerry Page, Suellen Eslinger,

and Victor Basili, The Software Engineering Laboratory,

SEL-81-I04, Software Engineering Laboratory Series, Goddard

SpaceFlight Center, February 1982.

[Church82]

Church, Victor, David Card, Frank McGarry, Jerry Page, and

Victor Basili, Guide To Data Collection, SEL-81-I01,

Software Engineering Laboratory Series, Goddard Space Flight
Center, August 1982.

[Manley82]

The Role of Measurements in Programming Technology, Lecture

presented at University of Maryland, November 15, 1982.

[Minsky75]

Minsky, M. L., A Framework for the Representation of

Knowledge, The Psychology of Computer Vision, pp. 211-280,

McGraw Hill, New York, 1975.

[Reggla82]

Reggla, James and Barry Perricone, KMS Manual, TR-1136,

Department of Mathematics, University of Maryland Baltimore

County, January 1982.

[SEL82]

SEL,, Collected Software Engineering Papers: Volume I, SEL-

82-004, Software Engineering Laboratory Series, Goddard

Space Flight Center, July 1982.

[Walston77]

Walston, C. E. and C. P. Felix, A Method of Programming

Measurement and Estimation, IB___MM Systems Journal, January
1977.

4-71

!

